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Abstract. The paper addresses the a-posteriori error estimates of modelling
heat convection problems in a plate. It derives estimators which are
essentially local (of the size of the thickness of the plate). The estimator
is guaranteed to be an upper bound. The lower bound of the error is also
given. The asymptotic exactness of the estimator with respect to the
thickness of the plate and with respect to the order of the model is proven.
The adaptive procedure based on this a-posteriori error estimator is

proposed. Numerical examples are given.
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1. Introduction

During recent years a large progress has been achieved in the field of
the a posteriori error estimations and adaptive procedures in the finite
element method. The basic ldeas have been introduced in {1-3] and since then
many error estimators appeared in the liferature.

The basis of these estimators are essentially of the following types.

a) Residual estimators which employ the residuals of the finite
element solution. For more about these we refer among others to [1-13].
These estimators often are utilizing the complementary en;rgy principles
(see e.g. [4,5,11,13]).

b) Flux-projection operators. These estimators are based on the
idea of smoothing the fluxes (which are discontinuous) and
comparison with the fluxes computed from the original finite element solution.
For more we refer to [14-18].

c) Other categories include extrapolation estimators (see e.g. [19])
and interpolation-error bounds, see e.g. [20-21].

In [22-24] the comparison of the performance of various major error
estimators and their robustness is given (see also there for an extensive
list of references).

The a posteriori error estimators are the basis of the adaptive
procedures. The indicators (which are the error estimators in the single
elements) govern then the design of the mesh.

We underline that the error is understood here as the difference
between the exact solution of the differential equation under consideration
and its finite element approximation. The addressed differential equation
describes the particular model, say, of the plate and the computed error

characterizes the accuracy of the finite element method with respect to




the exact solution of the selected plate model and not with respect to the
plate itself. Nevertheless the (exact) solution of the model (plate or
shell) problem has to be understocd as the approximate solution of the
3-dimensional formulation.

Many models were proposed in the literature. We refer for example to
the survey {25]. It is shown in [26] that various plate models could lead to
significantly different results especially in the neighborhood of the boundary
and in the presence of unsmooth input data. Hence the (exact) solution of the
model problem has to be understood as an approximation of the (exact) solution
of another "higher" problemn.

In the example we mentioned, the "higher" problem is the three
dimensional model.

Similarly as in any approximate method a hierarchy of models has to be
available and be such that it allows to obtain the solution of the original
"higher" model with a priori given accuracy. Practically this means that an
a-posteriori error estimator of the error of the model in comparison with the
exact solution of the higher model should exist and an adaptive procedure for
the optimal model selection should be available.

In practice the exact solution of the model is impossible to find
either. Hence we have to combine both errors--the error of the model and of
the finite element solution. In the adaptive procedure both errors have to
be controlled.

In contrast to the a posteriori error estimation techniques and adaptive
approaches of the finite element method as described briefly earlier, the a
posteriori error analysis of the models, and the problem of adaptive modelling
has not been addressed in the literature until now. In this paper we address

this problem for the solution of a model heat conduction problem in laminated




plates. Let us mention that this problem has also other physical
interpretations. The theoretical results presented here are based on {27].

We concentrate in this paper on the error of the models, and its
adaptive selection. We will only consider the case when the exact solution
of the models is available. Hence we will assume that the error of the
finite element solution is negligible in comparison with the model error.

The paper is organized as follows. After introducing some notation and
the three-dimensional boundary value problem in Section 2, we put in Section
3 the hierarchical modelling in pefépective with other approaches to derive
reduced models. In Section 4 we collect basic properties of the hierarchical
models from [27]. Section 5 contains the derivation of the a posteriori
estimator for the modelling error and demonstrates its asymptotic exactness
as d —0, as well as its spectral exactness as q-—®. In Section 6 we
jllustrate our theory by a simple numerical example, demonstrating in
particular that our theoretical bounds of the effectivity indices are sharp.
While Section 6 dealt with a smooth solution, we investigate in Section 7 the
performance of our estimator in the presence of boundary layers. In Section 8

we address the adaptive selection of the model.

2. The basic notions and the problem formulation

By wc R2 we denote a bounded domain with a piecewise smooth boundary

7. For any 0 < d we define

with the lateral boundary

and the faces




R, = ((Xl.xz.xa)l(xl,xz) € w, X3 =t d/2}

Often we will write x = (xl,xz), X = (xl,xz,x3) = (x;x3).

As a model problem we will consider the problem

Au=0 on 0,
(2.1) u=0 on T,
Dnu =f on Rt’

where Dn is the exterior unit normal derivative.

Let
H={ueH(Q) [u=0 on T}

and define the bilinear form B(:,:) : HxH—R and the functional

F(:):H—>R
(2.2) B(u,v) = fVu-Vvdx.
Q
= d d -
(2.3) F) = [£0x),%,) (0(x;,%,,5) + v(x),%,, -5))d%.
Q

Then the weak form of (2.1) reads:
Find u e€e H such that

(2.4) B(u,v) = F(v), Yv € H.

There exists a unique solution of the problem (2.2)-(2.4) provided that
f e Lz(w) (the assumption on f can be weakened). Further we define the

energy norm

(2.5) Wuli® = Blu, w2

We remark that the problem (2.1)-(2.3) respectively (2.4) describes the

heat conduction problem in the plate €. We assumed that the material of the




plate is homogeneous; nevertheless the theory is valid with small char ges

for the laminated plates, too (see [27]).

3. The modelling problem

The problem of the modelling means here a reduction of the three
dimensional problem (1.1) to a two dimensional one. There are three basic
types of such reductions (which are available not only for the heat
conduction problem but also for plates and shells). They are

1) Physical derivation,

2) Asymptotic derivation,

3) Hierarchical dimensional reduction.

Let us describe the main ideas of these three approaches.

1) Physical derivation

The problem (2.1) is first written in the form

(3. 1a) Ju=o0¢ in Q
(3. 1b) dive=0 in
(3.1c) on=Ff on Rt
(3.1d) u=0 on T.

Here o defined in (3.1a) has the meaning of fluxes, (3.1b) and (3.1c) have
the meaning of heat balance. For small d we assume that the flux o is
negligible so that the temperature u through the thickness is constant.

Then the heat balance through the thickness reads
d div (01.02) = -2f.

This leads to

_ 2£(x)

(3.2a) -A.u in Q,
x d
(3.2b) u=0 on 7.
]




The second phase is to derive an improved model. We will follow the

reasoning given in [29) (when applied to our problem).

Assume that the solution w of (3.2) is avallable and denote it by wu..

Then the corresponding flux is

0)(0), _
(3.3) (0'1.3'2 ) = Ty,

The heat balance equation in @ now reads

60'3 _
(3.4) div;c + a%a -
which suggests
30'3 - -
(3.5) Txs - div’_(o'
(3.8) o, = X% diva-=—xAu=2£
: 3 3 x 3 x 473

as(x) satisfies then the originally prescribed boundary condition

(3.7) o'a(xl.x #d) = f

2,
and the improved flux is now (o’l.a' .0'3). It satisfies the balance through

the thickness and the boundary condition at x, = *d/2. Now using

3
du
(3.8) — =0
8 3 3
we get the improved solution u
(3.9) ﬁ(xxx)=lf(x x)x2+|[1(x X.)
’ 1°72°"3 d 1’72° 73 1’727

Taking the heat balance through the thickness we get

1 3

dAu = = d°Af +2f + dAYy =0
1 x x
and hence
(3.10) -dAy =2f + L a%Af in w
' x 12 X ’
7




The boundary condition at ¥ has to be understood in a weak sense

IU(XI'XZ'X3)dx3 =0 for X, %, €F which yields

w(xl,xz) = -%5 dzf(xl,xz). (xl,xz) € 7

Now we can continue in the same vein and construct higher order approximations
(in d) in addition to u 1in (3.9).

The approaches of this type are used very often in iiie engineering
literature. Nevertheless their relations to the original problems are not
direct. In fact, in [30] p. 33 related to theories of this type for the
plate problems one finds the statement "the refined theories do not yield
reliable information from the standpoint of 3 dimensional problems.
Nevertheless, these theories specify the principal stress of the plate”.

2. Asymptotic derivation. For more about asymptotic analysis we refer
e.g. to [31]. We will present here only the main idea.

First the problem (2.1) is scaled to unit thickness d = 1 by the

substitution £ = (xl.xz), 63 = 33. Then the (2.1) takes the form
2

(3.11a) -Agu - 1—2 ‘;—-‘-‘ =0

d 3
with the boundary condition

1 6u _ 1

(3. llb) -d— 5——:; = *f for €3 + é-'
(3.11c) us=s0 for € € 7.

We look for a solution in the form

(3.12) u(§.€3) =1 u(O)(E) + d\ﬁl)(E) +d3u(2)

._d (€)+..-

Inserting (3.12) into (3.11) and matching powers of d, we get a sequence of




differential equations for u(J). The boundary condition (3.11ic) at I is
generally not satisfied by (3.12) and must be accounted for by additional
boundary layers of three-dimensional character.

The main problem with this and the previous approach is that they lead
ultimately to the differentiation of the data f. It is well known that for
unsmooth f and fixed d an increase of the number of terms in (3.12)
leads to a decreasa of the accuracy.

It is a.«o obvious that neither one of the previous two methods creates
a set (hierarchy) of models by which the exact solution of the three
dimensional problem can be approached to any prescribed accuracy at fixed,
positive thickness. Hence this type of modelling is not usable for our
purposes.

3. The hierarchic modelling.

Denote by
(3.13) P = (wilwi 2w, 1 <1 <n}
a collection of n domains with piecewise smooth boundaries aui such that

n
vy nwy = 0 if i#J and w=U EJ (P could be for example a
&=1

triangulation of w).

For a vector of nonnegative integers

(3.14) q, = (q4,...,9q.), q; 20

and a sequence of linearly independent functions wJ € Hl(—l,l) we define

the space

qy
(3.15) S(?P,q): = {u € H 'u'w = :E: Ugi)(x)wj[ggg], w, € ?}
i
J=0

Then S(P,q) ¢ H and the (P,q)-model is the boundary value problem:




Find u(?,q) € S(?,q) such that
(3.16) B(u(?,q),v) = F(v},. Vv e S(P,q).

By this we obtain a system of elliptic equations which describe the
(?,q)-model.

The essential question is how to select the functions wi. This problem
was analyzed in {28], [33]. For the laminated plates an analogous approach
can be used. In [28], [33] it has been shown that a good choice is (because

of the symmetry in x, of the solution)

3
3.17) =P .
( wJ(n) 2J(n)
Pt(n) is the &¢-th Legendre polynomial. In [33] the optimal choices of wJ

in dependence on various optimal’ty criteria were also analyzed.

4. The basic properties of the hierarchic modelling

Here we will address only the system (3.17) of functions and we will
deal here only with the energy norm Mumz = B(u,u). In [27] we analyzed also
other norms. Denoting by u the exact solution and by u(?,q) the exact
solution of the (?,q)-model, we define the modelling error

e(?,q) = u-u(?,q)
and will be interested in the a-posteriori estimation of flefl. In [27] the

following theorem has been proven.

Theorem 4.1. Let f € HZN(w) and have compact support in w. Then for

0<dsA

2N+1/2

Be(?,q)] S C(A)d £l

HZN(w)

where

N = min q
and Hk(w) ‘s the usual Sobolev space. The constant C depends on A and

w, but is independent of d and f.

10




Let us underline that the assumption about the compact support of f |is
almost essential. It can be weakened but certain boundary compatibility
conditions have to be satisfied. Without these conditions the solution u
has a boundary layer and Theorem 4.1 is not valid; the overall accuracy as
d—0 is at best d’2 1in general. Nevertheless, in [34] it is shown that
the low accuracy is confined only to a small neighborhood of 7. In

2N+1/2

addition, the full accuracy of d can be recovered by utilizing simul-

taneously different model orders a9, in the interior and near 7.

Theorem 4.2. Assume that f € HZN(U) and 0 <d < A, Let ?t = {wl,wz}

where w, = {(xl,xz) € w | dist (xl,x2 ) > t}, w, = w\w1 and let q = N,

q, = M2 N. Then, for t > C1Nd|&1d| and M(N,d) suitable,

2N+1/2

le(P, @)l S C(A)d £l

N (w)
Here C1 depends only on the Lipschitz constant of 7.
Finally we have Theorem 4.3 which guarantees that we can select a

sequence of models, the solution of which converges to the solution of the

three dimensional problem (2.3). We have

Theorem 4.3. Let d > 0 fixed, f € Lz(w). Then |e(?,q)jl—>0 as N =

min q1 — .
1<i<n

The introduced hierarchy is a large family of models which allows to
select the models having the following properties in the major special cases

a) If f 1is smooth and d 1is small then the particular model leads to
an error which is the smallest possible with respect to d, i.e. we have
asymptotic convergence with respect to d-—»0 with maximal possible rate,
regardless of compatibility conditions violated by the data.

b) In all cases, for any error tolerance there exists a model in the

11




family which leads to the error in the prescribed range..

c) As will be seen later an effective a-posteriori error estimator of
the modelling error exists and based on it an adaptive model selection
procedure can be designed.

The following theorem plays an important role in the theoretical basis of

the study of the adaptive hierarchal modelling.

Theorem 4.4. For every (?,q) we have

d/2
I e(xl,x x,)dx, =0 a.e X € w

2’73 3
~-d/2

where we denoted e(?P,q) = e.
We mention that in fact we have additional properties of e which were
utilized in [27].
5. The a-posteriori error estimation

Here we will give some basic results from [27] related to the
a-posteriori estimation of the modelling error, when measured in the energy
norm. The estimates in Lz-norm are also given in [27). The a~posteriori
~rror estimation will be basis for the adaptive modelling . For simplicity
we will present here the results for ? = {w} 1.e. we assume that we will not
pa~tition @ and that q1 = qo, i=1,...,n

In the sections 7 and 8, we will apply the results for the general case.

Let O < w(xlxz) € wl’m(w) and

2
a 2
(5.1) Q:= max Iz /¢°)

1=1,2 1 L®(w)

We will be interested in the error measured in the weighted energy norm

12




2 _ 2
(5.2) Memw = I;IVEI ¢(x1x2)dx1dx2dx3.
A typical choice is for example
(5.3) ¢(x0 X5 ) = exp — (Ix —x | + |x,- (O)I)
) 1’ p 27%2

d

where p € (0,1) and 0 < a < g. We can, of course, use other choices of ¢,

too. Assume now that we have computed the exact solution u(q) of the model.
Then with

au(q) (x

30 ds/2)

(5.4) P(xl.xz) =f -

X0 %0

we define the error estimator eq(u(q))

1/2
(5.5) Eq(u(q)) = / q+3 [I rce dx dx ] .

To assess the quality of this estimator we will define the effectivily

index
& (u(q))
{(5.6) Bq(u(q)) = —wu—_u(aﬂn .

We will say that & is an upper (lower) estimator if 0 > 1 (0 < 1,
respectively). Further we will call § (xl.xz) proper with respect to a

class T of data f, if

(5.7) 0 < <y < eq < K, <

holds for all data f € T.
The estimator 8q is asymptotically resp. spectrally exact on the set
of the data 'I‘d resp. TQ if eq-—+1 as d-—-)O+ resp. Sq-—af as

q—ow.

13




Let us remark that as usual the asymptotic exactness requires
considerably stricter assumptions on the data than the properness. Further,
we underline that the quality of the estimators has to be understood relative
to a class of data.

Let us finally remark that the weight can rapidly change in comparison
with d (see (5.3)). This makes the estimator very local and it can be used
as basis of the adaptive modelling. 1In [27] we have proven the following

theorem
Theorem 5.1.
a) If feT= Lz(w) then

vz vz -1/2

(5.8) e 2 (1-v2 dQ) (1 +1T-dQ(1 +n—dQ))

.= 2
b) If feTg=Af] Urly [Wrlly , S B < @ (where (irfl

= J' IV8r12p%dx. dx.) then
Q X 1772

2

(5.9) 0 s [1 . g -—_d—z— (8% + Qz)]l/z.
(2q+3)7-4

If, moreover, ¢ =1, then Q =0 and the factor 3/2 in (5.9) can be
replaced by 1/2.

Theorem 5.1 shows that the estimator is «k,, k, proper with known xk, and

1’ 2 1

K If we select the exponential weight ¢ given in (5.3) then the

o
estimator is asymptotically exact on TB.

We see from the theorem that we get an upper estimator for a large class
of data, namely we have only to assume that f e Lz(w). On the other hand, to
get 8 ~ 1 we need more smoothness of the solution, for example that no

boundary layer exists (this can be achleved for example if f {is smooth and

has compact support similarly as in Theorem 4.1). Using in (5.8) and (5.9)

14




1
Q~3

Theorem 5.1 concentrates on the case when d—0. Let us now formulate

we get a practically local estimator of high quality.

the theorem when d 1is fixed and q—®. In [27] we have proven
Theorem §. 2.

a) If f e TB with B = E(q/d)l-e, € > 0, B independent of d,q then
d 2e41/2
e(q) < [1 + Cl&ﬂ ] , 1 =1,2

where C1 is independent of q and d.

b) Let A (xl,xz) denote the k-th eigenpair of =-A in w with

x %k
0. Let further r(xl,xz) = zz:pk ¢k(x1,x2) and assume f is such
k

Ol
that Py # 0 and

2, -1 lp, | -
Z[nd_ﬂ] 8 — < (VZ-1 (1-q"%)

2 e,
k22 1

for some € > 0. Then
olq) 2 (1 - C.Q)(1 + 2C.0(1 + 2¢.Q)) "1/
2 2 2
where Q is as in (5.1) and

C

_ d
2 m {(2q+3)%- "¢
and © is the best constant in
le, 7ol 8.
k"1 Lw(w) k
In theorems 5.1 and 5.2 we analyzed only the error in energy norm.

Nevertheless, similar results can also be obtained for the Lz-norm estimator

derived in (27].

6. A simple example

The results we have shown in the previous sections hold also in the case

that w = (-1,1). In the example here we use Q = w x (~-d/2, d/2) and

f = cos X Then obviously

NIA

1

15




n
Ch(i xz)

nd,.nt’

In this case we can compute (by computer algebra) the effectivity index eq

(6.1) u(xl.xz) = cos (g x.)

1

explicitly and get

2
2 62 =1+d—£+0(d4).

2 m
T el q

(6.2) e

The coefficients mq are listed in the Table B.1.

Table 6.1. The coefficients mq in (6.2)

s | o | 2] s | s |s | s

m 240 l 360 | 936 I 1768 | - 2856 I 4200 l 5800

a |

We see that in fact the estimator is an upper one and that it is
asymptotically exact.

In the Table 6.2 we report the values of eq computed directly. The
finite element method with very fine mesh and high degree of elements p was
used to ensure that we obtained an accurate solution of the model. We
selected d =1 and d =2, i.e. a very large thickness to show the
effectiveness of the estimator. In the Table 6.7 we also report ]

§2=1+‘ﬁ’5
m

q
i.e. we neglected the term 0(d4) in (6.2).

Finally we list the estimates based on (5.8) (5.9). 1In our case r(x) =

Ccos g x1 and hence B = g. In addition we report the relative energy error

in %

16




Table 6.2. The effectivity indices and relative
errors for large d.

a | e@ | 6(q) | Upper b | Lower b | felx

0 1.0200 | 1.006S 1.32 1 I 40.62

1 1.01324 | 1.0043 1.085 1 1.057 =1

2 1.0052 1.0033 1.040 1 I 0.0081

a | el@ | a(q) | Upper b | Lover b | el

0 1.0742 1.025 1.626 1 64.51

1 1.0482 1.017 1.306 1 6.21 e

2 1.0203 1.013 1.153 1 0.178

m1 .

Realize that 9(qi+1)/6(qi) ~ E;:I. This is the effect of the spectral

accuracy of the error estimator. The same effect is seen also in the
improvement of the upper bound. This also shows that the term 0(d4)
neglected In (6.2) decreases as q increases.

Let us underline that in the described example the thickness is no
small (in fact when d = 2 then 2 is a square) and there is now boundary

layer in the solution.

7. The problem in the presence of a boundary layer
Let us consider the case f =1 where the solution has a boundary layer.

Hence f ©belongs to the class T, with a large B8. Table 7.1 shows the

B

effectivity index and the relative error for different q.

17




Table 7.1 The effectivity index and the error for the
solution with the boundary layer

d d=0.2 | d=1 d=2

q e lell% e ell% e llel%
0 1.011 9.88 1.063 42.53 1.140 87.65
1 1.46 0.505 1.463 5.14 1.454 12.291
2 1.778 0.197 1.778 2.01 1.778 4.736
3 1.933 0.112 1.933 1.14 1.933 2.681
4 1.911 0.078 1.908 0.803 1.912 1.883
5 1.760 0.064 1.743 0.655 1.7860 1.529
6 1.554 0.056 1.511 0.587 1.554 1.358
7 1.348 , 0.053 1.292 0.557 1.348 1.269

We see that the effectivity index is growing with the value ¢, achieves
maximum at g ®# 3 and then decreases. It is also interesting that the
effectivity index is very insensitive to the thickness d. The behavior of
6 can be explained as a combination of the influence of large B8 and the
spectral accuracy.

Let us now divide w« 1into subdomains. In our case w = (-1,1) and we
will divide  into subdomains I, = (x

i
=90, ¥ = 1 on 11, P = 0 on IJ’ i # J. This of course is not exactly

j-1°%y)» 1 = 1,...6 and will assume
in our framework of assumptions. Nevertheless we can understand this
selection of ¢ as an approximation. Hence we will speak about indicators
instead of estimators. Let us consider the 6 domains defined by the

sequence (xl) = {-1, -0.75, ~-0.50, 0.0, 0.50, 0.75, 1.00}. The table 7.2
shows the indicators in these domains with uniform q. Because of symmetry we

report the indicators on first three subdomains only.

18




Table 7.2. The error indicators for 6 domains

2 0.359 -5 |0.126 -5

3 0.224 -8 |0.693 -8

We clearly see that the boundary layer is well indicated.
In Table 7.3 we show the value of the estimator in the first

subdomain I1 as function of q

Table 7.3. The error indicators in the subdomain I1

a| v | 2 | s | s | s | s |7

8(q)|0.5761-1 |0.2741-1 |0.1687-1 l0.1173-1 |0.8768-2 0.6875-2 [0.5578-2

8 9

0.4644-2 | 0.3945-2
Figure 5.1 shows the graph of the function &(q). We see 8(q) = q‘B

1 < B8 < 2. Let us mention that this rate 1s due to the combined effect of
singularity in the corner (of order rZLg r) and the boundary layer.

Table 7.2 indicates that it is advantageous to use nonuniform q. In
Tables 7.4a and b we show the error for different distributions of q for
sets of 18 and 20 subdomains. Because of symmetry we only list' q in the
first 9 (10) domains.

We used the following two sets of subdomains defined by the meshes
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a) 18 subdomains.

-1.000, -0.880,

-0.500 0.00,

b) 20 subdomains

-1.000, -0.898

-0.975

-0.980

-0.750 -0.500 0.00

-0.950

-0.975

The thickness d =0.2 and f = 1.

-0.925

-0.850

-0.3900

-0.925

-0.850

-0.900

-0.750

-0.850

We report in the Table 7.4a the error,

18
the effectivity index and W = :E: (qe + 1) which (crudely) estimates the
e=1
work.
Table 7.4a. The distribution of q for 18 subdomains
w, T 2 3 4 5 6 7 8 9 10
1 2 3 3 4 4 5 5 6 2 3
2 2 3 3 3 3 3 3 3 2 3
3 2 2 2 2 2 2 2 2 2 3
4 2 2 2 2 2 2 2 2 2 3
5 2 2 1 2 1 2 1 2 2 3
6 1 1 1 1 1 1 1 1 2 3
7 1 1 1 1 1 1 1 1 2 3
8 1 1 1 1 1 1 1 1 2 3
9 1 1 1 1 1 1 1 1 2 3
Error % 0.201( 0.126| 0.146| 0.106{ 0.129(0.0947( 0.110( 0.089| 0.197| 0.112
0 1.7 { 1.74 | 1.54 | 1.52 | 1.32 | 1.31 [ 1.12 | 1.13 [ 1.78 | 1.93
W 23 25 24 26 25 27 27 28 27 36
20




The Table 7.4b shows analogous results for the case of 20 subdomains.
The first two subdomains are creating together the first subdomain in the

case of 18 elements. This is indicated by a dashed line in the Table 7.4b.

Table 7.4b. The distributions of q for 20 domains

o, casel 2 3 4 5 6 7 8
1 2 3 4 5 6 6 7 7
2 2 3 4 S ) 6 5 6
3 2 3 3 3 3 3 ( 3 3
4 2 2 2 2 2 2 2 2
S 2 2 2 2 2 2 2 2
6 2 2 2 2 2 2 2 2
7 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1
Error % 0.201] 0.126] 0.106| 0.094) 0.093}{ 0.089 0.92 0.088
2] 1.75 1.74 1.52 1.31 1.21 1.13 1.11 1.04
W 23 25 26 27 27.5 28 28 28.5
. (q+D+(q+1) o
In the Table 7.4b we define 5 W= + :E: (q1 + 1) to make a
2
=1
comparison possible. If the degrees in wl and w2 are the same then we

obtain ldentical results as in Table 7.4a.
We~ see from the Tables 7.4a,b that the optimal q distribution depends

on the error we wish to achieve and on the subdomains. The main error is in
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the area of the boundary layer. Comparing the cases 6 and 7 in Table 7.4b
we see that the case 6 leads to a smaller error than case 7. This underlines
the importance of the right q distribution.

We have shown in previous sections that the error estimator is not
influenced too much by errors on the subdomains which are not too close to
the given one (in the scale of d).

To show the sensitivity of the indicators with respect to the
g-distribution, let us show in Table 7.5 the indicators in the subdomalns

w, (in the case of 18 subdomains) for some cases listed in Table 7.4a.

Wa, Wy Uy

Table 7.5. Error estimators for the q distribution
given in Table 7.4

Case 83 84 85
1 0.104-2 0.782-3 0.867-3
2 0.162-2 0.719-3 0.866-3
4 0.163-2 0.719-3 0.866-3
6 0.183-2 0.719-3 0.866-3
g 0.105-2 0.871-3 0.487-3

Estimators 88 - 8

g were completely independent of the gq-distribution.

8. Problem of adaptive modelling

The goal of adaptive modelling 1s to design the distribution of q, so
that for given error tolerance the work is minimal. The quantitative
characterization of the work could be different. Here we will use the crude
measure we introduced in the Section 7, namely W = ZE:(qi + 1).

We will show one of the many possible adaptive strategles in two examples.
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Example 1. Let us consider the problem we discussed in the previous section,
namely f =1 and d = 0.2 We will use the mesh which divides the domain
into 18 subdomains. The target relative accuracy is T = 0.1%.

First we solve the problem with q = 1 (uniform) and compute the
error indicators on the particular domains. We single out the subdomains
where the error is not necessarily made smaller. The principle is to add the

2

smallest indicators 8? so that their error is %i B(u,u). We conclude that
q has to be increased on 8 subdomains, namely w, @, and Wig T Wig- The
goal is to increase q, on these domains so that we obtain the error in the
prescribed tolerance. Using the fact that the indicator on a domain w, is
not essentially influenced by the indicators on the other subdomains, we will
"freeze" the solution on all subdomains except the one under consideration.
By this procedure we obtain the following distribution of q:
9,6,4,2,1,1,1,1,1 (Because of the symmetry we report here and in what follows
only the subdomains for x < 0.) By this distribution we achieved the
relative error 0.077%4. Comparing this distribution with Table 7.4a we see

that the used strategy ylelded the right distribution.

Example 2. Here we assume that

22X

£f ==
(24a?)’
and that d = 0.2, aa = 0.1.

We will use 10 subdomains characterized by the mesh X, =
-0.6, -0.4, -0.2, -0.0, 0.2, 0.4, 0.8, 0.8, 1.0, with the target accuracy
0.1%. In this case the main error is in the place where the solution is
unsmooth, i.e. in the middle (x = O0) of the domain. The adaptive procedure

gave the following distribution of qy 1, 1, 1, 2, 3. The relative energy

error achieved was 0.0743%.
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